U.S. ARMY MEDICAL DEPARTMENT CENTER AND SCHOOL

 FORT SAM HOUSTON, TEXAS 78234-6100

DEVELOPMENT

This subcourse is approved for resident and correspondence course instruction. It reflects the current thought of the Academy of Health Sciences and conforms to printed Department of the Army doctrine as closely as currently possible. Development and progress render such doctrine continuously subject to change.

ADMINISTRATION

For comments or questions regarding enrollment, student records, or shipments, contact the Nonresident Instruction Section at DSN 471-5877, commercial (210) 2215877, toll-free 1-800-344-2380; fax: 210-221-4012 or DSN 471-4012, e-mail accp@amedd.army.mil, or write to:

COMMANDER
 AMEDDC\&S
 ATTN MCCS HSN
 2105 11TH STREET SUITE 4192
 FORT SAM HOUSTON TX 78234-5064

Approved students whose enrollments remain in good standing may apply to the Nonresident Instruction Section for subsequent courses by telephone, letter, or e-mail.

Be sure your social security number is on all correspondence sent to the Academy of Health Sciences.

CLARIFICATION OF TRAINING LITERATURE TERMINOLOGY

When used in this publication, words such as "he," "him," "his," and "men" are intended to include both the masculine and feminine genders, unless specifically stated otherwise or when obvious in context.

TABLE OF CONTENTS

Lesson PAGE
INTRODUCTION
1 BASIC ELECTRICAL CIRCUITS 1

CORRESPONDENCE COURSE OF
 THE US ARMY MEDICAL DEPARTMENT CENTER AND SCHOOL

 SUBCOURSE MDO903

 SUBCOURSE MDO903

 BASIC ELECTRICAL CIRCUITS

 BASIC ELECTRICAL CIRCUITS

 INTRODUCTION

 INTRODUCTION}

This subcourse is designed to give you a basic knowledge of simple circuits that carry electricity from a power source to some kind of electrical equipment. With a knowledge of these fundamentals, you will be able to make better use of electrical equipment and to better understand future textual materials that mention electrical factors in the function of equipment.

Subcourse Components:

This subcourse consists of programmed text.
Lesson 1. Basic Electrical Circuits

Study Suggestions:

Here are some suggestions that may be helpful to you in completing this subcourse:
--Read and study each lesson carefully.
--Complete the subcourse lesson.

Credit Awarded:

To receive credit hours, you must be officially enrolled and complete an examination furnished by the Nonresident Instruction Section at Fort Sam Houston, Texas. Upon successful completion of the examination for this subcourse, you will be awarded 3 credit hours.

You can enroll by going to the web site http://atrrs.army.mil and enrolling under "Self Development" (School Code 555).

A listing of correspondence courses and subcourses available through the Nonresident Instruction Section is found in Chapter 4 of DA Pamphlet 350-59, Army Correspondence Course Program Catalog. The DA PAM is available at the following website: http://www.usapa.army.mil/pdffiles/p350-59.pdf.

SUBCOURSE MD0903

LESSON 1

ASSIGNMENT

OBJECTIVE

INSTRUCTIONS

SUGGESTIONS

Basic Electrical Circuits.
Frames 1 through 100.
After completing the programmed text, you should be able to choose correct answers to questions about basic electrical circuits, current, resistance, amperes, volts, and equivalent.

This text is set up differently from most subcourses It is a workbook that utilizes programmed instruction. The numbered "frames" present information and/or a question about presented information. You should work through the frames in the order presented.
Answer each question that is presented. To check your answers, go to the shaded box of the NEXT frame. For example. the solution to the question presented in Frame 2 is found in the shaded box of Frame 3.

Read Subcourse MD0902, Basic Electricity, before taking this subourse.

After going through the programmed text at a relatively slow pace, go back through it several times as rapidly as you can. This will not take long and will help you feel more knowledgeable as you study. The purpose of the programmed text is memorization as well as understanding.

FRAME 1 The diagram below will help you to recall that current is a flow of \qquad through a conductor.	
FRAME 2 Below are several series circuits. Study the carefully. In a series circuit, there (is only one/are more than one) path for the current to flow.	Solution to Frame 1 electrons
FRAME 3 The above is a series circuit because	Solution to Frame 2 is only one
FRAME 4 Label each circuit as either "Series" or "Not Series."	Solution to Frame 3 it has only one path for current to flow

FRAME 5	Solution to Frame 4
What would be the reading on the ammeter in the series circuit below?	a. Series b. Not Series c. Not Series d. Series
FRAME 6 No matter where you measure the current in the series circuit below, the current readings would all be the	Solution to Frame 5 $\frac{12 \mathrm{v}}{2 \Omega}=6 \mathrm{amp}$
FRAME 7 In any part of a series circuit, the current is the \qquad as long as the circuit is not changed.	Solution to Frame 6 same (6 amp)
FRAME 8 Write in the current reading of each ammeter connected in the series circuit below.	Solution to Frame 7 same

FRAME 15 In a series circuit with only one resistor, R_{1} and R_{t} must be the same. In the series circuit below, there is only one resistor. This means the R_{1} and R_{t} (are/are not) the same. They are both equal to \qquad -.	Solution to Frame 14 30
FRAME 16 To find the current in the circuit below, you would substitute the number ($4 / \underline{6} / \underline{10} / \underline{24})$ for R_{t} in the formula $I_{t}=\frac{E_{t}}{R_{t}}$.	Solution to Frame 15 are 2Ω
FRAME 17 In the circuit below, $\mathrm{E}_{\mathrm{t}}=$ \qquad . $R_{t}=$ \qquad Find the current $I_{t}=$ \qquad .	Solution to Frame 16 10

FRAME 18 If you calculated current (I) in the circuit below and used this formula: a. $\quad \mathrm{I}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{1}, \text { your answer would be (right/wrong). }}$ b. $\quad \mathrm{I}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{2},}$ your answer would be (right/ $\underline{\text { wrong }) .}$ c. $\quad \mathrm{I}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{t}}}$, your answer would be (right/wrong).	Solution to Frame 17 90 v 30Ω 3 amp $I_{t}=\frac{E_{t}}{R_{t}}=\frac{90 v}{30 \Omega}=3 \mathrm{amp}$
FRAME 19 In the circuit below, find I. Example: : $I_{t}=\frac{E_{\mathrm{t}}}{\mathrm{R}_{\mathrm{t}}^{-}}=\frac{10 \mathrm{v}}{(2+3) \Omega}=\frac{10 \mathrm{v}}{5 \Omega}=2 \mathrm{amps}$ You do this one: $=$	Solution to Frame 18 a. wrong b. wrong c. right

FRAME 20 In the circuit below, $\mathrm{I}_{\mathrm{t}}=$ \qquad	Solution to Frame 19 $\mathrm{I}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{t}}}=\frac{12 \mathrm{v}}{6 \Omega}=2 \mathrm{amps}$
FRAME 21 So far, you have learned that in series circuits: a. There is/are (only one/more than one) path for the current to flow. b. Current has the (same/different) value everywhere in the circuit. c. To get R_{t}, we (sum/subtract) all individual resistances. d. To find I_{t}, you must use ($\left.\underline{R}_{1} / \underline{R}_{t}\right)$ \qquad in the formula $\mathrm{I}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{t}}}$.	Solution to Frame 20 $3 \mathrm{amp} \quad \begin{aligned} \mathrm{I}_{\mathrm{t}} & =\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{t}}} \\ & =\frac{90 \mathrm{v}}{30 \Omega} \\ & =3 \mathrm{amp} \end{aligned}$
FRAME 22 The voltage applied by a battery is called the applied voltage (E_{a}). This battery will apply a voltage called the	Solution to Frame 21 a. only one b. same c. sum d. R_{t}
FRAME 23 In the circuit below, the E_{a} (applied voltage) is \qquad volts.	Solution to Frame 22 applied voltage $\left(\mathrm{E}_{\mathrm{a}}\right)$

| FRAME 24 |
| :--- | :--- | :--- |
| To move a wagon uphill, you must apply a force. To move |
| electrons through a resistor, a battery must also apply |\quad Solution to Frame 23

FRAME 29	Solution to Frame 28
You have learned that the symbol for voltage is E.	$\left(\mathrm{R}_{1}\right) 5 \mathrm{v}$
For voltage drop across R_{1}, you will use the symbol E_{1}.	$\left(R_{2}\right) 20 \mathrm{v}$
For voltage drop across R_{2}, you will use the symbol E_{2}. For voltage drop across R_{3}, you will use the symbol	
FRAME 30	Solution to Frame 29
Total voltage drop $\left(\mathrm{E}_{\mathrm{t}}\right)$ is the sum of all individual voltage drops. In the circuit below, E_{t} is the \qquad of E_{1} and $E_{2} . E_{t}=$ \qquad .	E_{3}
FRAME 31 E_{t} (total voltage drop) in this circuit is \qquad volts.	Solution to Frame 30 total (or sum)
	15 v

FRAME 32 E_{t} in the circuit below is \qquad	Solution to Frame 31 30
FRAME 33 E_{t} (total voltage drop) in the circuit below is \qquad E_{t} (applied voltage) is also \qquad	Solution to Frame 32 $15 v$
FRAME 34 In the series circuit below, the E_{a} (applied voltage) is \qquad and the E_{t} (total voltage) is \qquad . E_{t} and E_{a} are (the same/different) in any series circuit.	Solution to Frame 33 10 v $10 \mathrm{v}$

FRAME 35 E_{t} in the circuit below is \qquad ; E_{a} is \qquad .	Solution to Frame 34 18 v 18 v the same
FRAME 36 If $E_{t}=24 v$, then $E_{a}=$ \qquad If $E_{a}=6 v$ then $E_{t}=$ \qquad If any series circuit, E_{t} and E_{a} are \qquad	Solution to Frame 356v $6 v$ 6 v
FRAME 37 One way to find I (current) in a series circuit is to use E_{t} in the formula $I_{t}=\frac{E_{t}}{R_{t}^{t}}$ To find I_{t} in the circuit above, use \qquad in the formula	Solution to Frame 36 $24 v$ $6 v$ the same (equal)

FRAME 38		Solution to Frame 37
Find I in the circuit below.		
Example:	You work this problem.	$l_{t}=\frac{E_{t}}{R_{t}}$
$\mathrm{I}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{t}}}=$	$I_{t}=$	
$=\frac{20 v}{10 \Omega}$		
$\mathrm{I}_{\mathrm{t}}=2 \mathrm{amps}$	$I_{t}=$	
FRAME 39		Solution to Frame 38
Find I in the circuit below.		
Example:	You do this:	
		$\frac{24 v}{12 \Omega}$ 2 amp
$\mathrm{I}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{t}}^{-}}=$	$I_{t}=$	
$=\frac{27 v}{9 \Omega}$	$=$	
$=3 \mathrm{mps}$	$I_{t}=$	

FRAME 40 I (current) in the series circuit below is . \qquad	Solution to Frame 39 $\begin{aligned} \mathrm{I}_{\mathrm{t}} & =\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{t}}} \\ & =\frac{5 \mathrm{v}}{5 \Omega} \\ & =1 \mathrm{amp} \end{aligned}$
FRAME 41 You just learned that to find I in a series circuit, you use the formula: $I_{t}=\frac{E_{t}}{R_{t}}$. Since $E_{a}=E_{t}$, you (may/may not)also use the formula $I_{t}=\frac{E_{a}}{R_{t}}$	Solution to Frame 40 3 amp $\frac{9 v}{3 \Omega}=3 a m p$
FRAME 42 In the circuit below I = \qquad	Solution to Frame 41 may

FRAME 46 To calculate E (voltage drop across R_{1}) exactly, you use the formula $E_{1}=I_{1} \times R_{1}$: To calculate E_{1} in the circuit above, you use the formula	Solution to Frame 45 calculate the exact voltage drop
FRAME 47	Solution to Frame 46
Find E_{1} in the circuits below: Example: You do this one	$\mathrm{E}_{1}=\mathrm{I}_{1} \times \mathrm{R}_{1}$
$\begin{array}{rlrl} \mathrm{E}_{1} & =1 \times \mathrm{R}_{1} & \mathrm{E}_{1} & = \\ & =3 \mathrm{amp} \times 2 \Omega & = \\ & =6 \mathrm{v} & = \end{array}$	

FRAME 48	Solution to Frame 47
Example: $\begin{aligned} E_{2} & =I \times R_{2} \\ & =3 \mathrm{amp} \times 4 \Omega \\ & =12 \mathrm{v} \end{aligned}$ $\mathrm{I}=3 \mathrm{amp}$ You do this one: $\begin{aligned} \mathrm{E}_{2} & = \\ & = \\ & = \end{aligned}$ \qquad \qquad \qquad $\mathrm{I}=3 \mathrm{amp}$	$\begin{aligned} E_{1} & =I_{1} \times R_{1} \\ & =4 \mathrm{amp} \times 6 \Omega \\ & =24 \mathrm{v} \end{aligned}$
FRAME 49 In the circuit below $\mathrm{I}=2 \mathrm{amp}$. Find E_{2} (voltage drop across R_{2}).	Solution to Frame 48 $\begin{aligned} E_{2} & =I \times R_{2} \\ & =3 \mathrm{amp} \times 5 \Omega \\ & =15 \mathrm{v} \end{aligned}$
FRAME 50 Compute E_{2} in the circuit below: $\mathrm{E}_{2}=$ \qquad	Solution to Frame 49 $\begin{aligned} & 24 \mathrm{v} \\ & E_{2}=I \times R_{2} \\ &=2 \mathrm{amp} \times 12 \Omega \\ &=24 \mathrm{v} \end{aligned}$

FRAME 51 To check the total voltage drops, you can sum the individual voltage drops to get E_{t}. This should equal E_{a}. The voltage drops calculated above (do/do not) check.	Solution to Frame 50 $\begin{aligned} \mathrm{E}_{2} & =I \times \mathrm{R}_{2} \\ & =4 \mathrm{amp} \times 10 \Omega \\ & =40 \mathrm{v} \end{aligned}$
FRAME 52 In the circuit below, find $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$. $E_{1}=$ \qquad $\mathrm{E}_{2}=$ \qquad $E_{3}=$ \qquad $E_{t}=$ \qquad	Solution to Frame 51 do
FRAME 53 Sometimes you will not be told the value of I (current). Therefore, before you can compute E_{1}, or E_{2}, or E_{3}, you must find the value of \qquad to use in the formulas: $\begin{aligned} & \mathrm{E}_{1}=\mathrm{I}_{1} \times \mathrm{R}_{2} \\ & \mathrm{E}_{2}= \\ & \mathrm{E}_{3}= \\ & \end{aligned}$	Solution to Frame 52 $\begin{aligned} & E_{1}=20 v \\ & E_{2}=24 v \\ & E_{3}=14 v \\ & E_{t}=58 v \end{aligned}$

To find E_{1} in the circuit below, you must first find \qquad . You find I now. I = \qquad amp.	$\begin{aligned} & 1 \\ & I_{2} \\ & I_{3} \times R_{3} \end{aligned}$
FRAME 55 In the circuit below, find I and then E_{2}. $\begin{aligned} & \mathrm{I}=\quad \mathrm{amp} \\ & \mathrm{E}_{2}=\quad \mathrm{v} \end{aligned}$	Solution to Frame 54 Total resistance $\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}_{\mathrm{t}}}=\frac{18 \mathrm{v}}{6 \Omega}=3 \mathrm{amp}$
FRAME 56 In the circuit below, find $\mathrm{I}, \mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{3}. $\mathrm{I}=$ \qquad $\begin{aligned} & \mathrm{E}_{1}= \\ & \mathrm{E}_{2}= \\ & \mathrm{E}_{3}= \\ & \hline \end{aligned}$	Solution to Frame 55 $\begin{aligned} & I=\frac{E_{a}=24 v}{R_{t}}=2 \mathrm{amp} \\ & E_{2}=I \times R_{2} \\ & \quad=2 \mathrm{amp} \times 4 \Omega \\ & \quad=8 \mathrm{v} \end{aligned}$

FRAME 57 In the circuit below, find: $E_{1}=$ \qquad ; $\mathrm{E}_{2}=$ \qquad ; $\mathrm{E}_{3}=$ \qquad Check: \qquad	Solution to Frame 56 $\begin{gathered} 2 \mathrm{amps}\left(R_{t}=7+4+3\right. \\ =14 \Omega \\ 1=\frac{\mathrm{E}_{\mathrm{a}}}{}=\frac{28}{R_{\mathrm{t}}}=2 \mathrm{amps} \\ 14 \\ \mathrm{E}_{1}=1 \times \mathrm{R}_{1}=2 \mathrm{amp} \mathrm{x} \\ 7 \Omega=14 \mathrm{v} \\ \mathrm{E}_{2}=1 \times \mathrm{R}_{2}=2 \mathrm{amp} \mathrm{x} \\ 4 \Omega=8 \mathrm{v} \\ \mathrm{E}_{3}=1 \times R_{3}=2 \mathrm{amp} \mathrm{x} \\ 3 \Omega=6 \mathrm{v} \end{gathered}$ Yes, 28v = 28v
FRAME 58 To summarize what you have learned about series circuits, complete the statements below: a. There is/are (only one/more than one) path for current to flow. b. I (current) has (the same/a different) value(s) everywhere in the circuit. c. To get R_{t}, you (sum/subtract) the individual resistances. d. To get E_{t}, you (sum/subtract) the individual voltage drops. e. E_{t} and E_{a} (are/are not) the same. f. To find I, you (must/must not) use R_{t}. g. To find I, you (must/must not) use E_{t} or E_{a}. h. To find E_{1}, use the formula \qquad i. To find E_{3}, use the formula \qquad	Solution to Frame 57 $\begin{aligned} & E_{1}=20 v \\ & E_{2}=12 v \\ & E_{3}=8 v \end{aligned}$ Check: $\begin{aligned} & E_{a}=E_{t} \\ & 40 v=40 v \end{aligned}$

| FRAME 59 |
| :--- | :--- |
| This is one way of placing |
| resistors in parallel. | | Solution to Frame 58 |
| :--- |
| aralle only one |

FRAME 63	Solution to Frame 62
Now let us look at resistance. In the parallel circuit below, resistance $1\left(R_{1}\right)$ is 15Ω; R_{2} is \qquad Ω; and R_{3} is \qquad Ω.	a. Series b. Parallel c. Series d. Parallel
FRAME 64 In any parallel circuit, R_{t} (total resistance) is less than the smallest resistance. In the circuit below, R_{t} is less than \qquad Ω.	Solution to Frame 63 10 20
FRAME 65 R_{t} will be less than 10Ω in the circuit below. R_{t} is always (more/less) than the smallest resistance.	Solution to Frame 64 5
FRAME 66 So far you have learned that: a. A parallel circuit has (only one/more than one) path for current flow. b. R_{t} is (more/less) than the (largest/smallest) resistance in a parallel circuit.	Solution to Frame 65 less

FRAME 67	Solution to Frame 66
To determine the value of R_{t} in a parallel circuit, use the formula:	a. more than one b. less; smallest
$\mathrm{R}_{\mathrm{t}}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}} \text {, etc. }$ In the circuit above, you use the formula $R_{t}=$ \qquad	
FRAME 68	Solution to Frame 67
Find R_{t} Example Problem	$R_{t}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}$
$\begin{array}{rlrl} \mathrm{R}_{\mathrm{t}} & =\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}} & \mathrm{R}=\frac{1}{\frac{1}{\mathrm{R}_{1}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}} \\ & =\frac{1}{\frac{1}{3}+\frac{1}{6}+\frac{1}{12}} & & \\ & =\frac{1}{\frac{4}{12}+\frac{2}{12}+\frac{1}{12}}=\frac{1}{\frac{7}{12}}=\frac{12}{7} & = \\ & =1.714 \Omega & \end{array}$	

FRAME 69 a. In the parallel circuit below, R_{t} equals \qquad b. R_{t} (is/is not) less than the smallest resistor.	Solution to Frame 68 $R_{t}=\frac{1}{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}}$ $\begin{aligned} & \frac{1}{\frac{4}{8}+\frac{2}{8}+\frac{1}{8}}=\frac{1}{\frac{7}{8}}=\frac{8}{7} \\ & =1.14 \Omega \end{aligned}$
FRAME 70 So far you have learned that: a. A parallel circuit has (only one/more than one) path for current to flow. b. To find R_{t}, you use the formula \qquad . c. You can check on any R_{t} you compute because the R_{t} in a parallel circuit must be (more/less) than the (largest/smallest) resistance.	Solution to Frame 69 a. $\frac{1}{\frac{4}{40}+\frac{2}{40}+\frac{1}{40}}=\frac{1}{\frac{7}{40}}=\frac{40}{7}$ $R_{t}=5.71 \Omega$ b. is
FRAME 71 To help prevent confusion between finding R_{t} in series circuits and finding R_{t} in parallel circuits, answer the questions below: a. To find R_{t} in the SERIES CIRCUIT above, use this formula: b. To find R_{t} in the PARALLEL CIRCUIT above, use this formula:	Solution to Frame 70 a. more than one b. $R_{t}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}$ c. less, smallest

Solution to Frame 77

FRAME 82 In parallel circuit, the voltage drop across each branch is always (the same/different).	Solution to Frame 81 the same
FRAME 83 In a parallel circuit, the voltage drop across each resistor (regardless of size) is the same. In a series circuit, the voltage drops are (the same/different) according to the size of the resistor.	Solution to Frame 82 the same
FRAME 84 Now that you know what happens to resistance and voltage in a parallel circuit, let us look at current. The diagram below shows that in a parallel circuit, the current splits and flows through (only one/each) resistor.	Solution to Frame 83 different
FRAME 85 Because the current splits up and flows through each resistor, it is important that you know how to compute the current flowing through \qquad	Solution to Frame 84 each
FRAME 86 You have learned that the symbol for current is I. The symbol for the current flowing through R_{1} is I_{1}. The symbol for the current flowing through R_{2} is I_{2} The symbol for the current flowing through R_{3} is \qquad	Solution to Frame 86 each resistor

FRAME 93 In the circuit below, find $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3}. \qquad	Solution to Frame 92 $\begin{array}{rl} I_{1}= & \frac{E_{a}}{R_{1}}= \\ I_{2}=\frac{E_{a}}{R_{2}} \\ \frac{10 \mathrm{v}}{20 \Omega}= & \frac{10 \mathrm{v}}{5 \Omega}= \\ 0.5 \mathrm{amp} & 2 \mathrm{amp} \end{array}$
FRAME 94 To find I_{1}, you use the formula $I_{1}=\frac{E_{a}}{R_{1}}$ To find I_{2}, you use the formula $I_{2}=\frac{E_{a}}{R_{2}}$ To find I_{3}, you use the formula $I_{3}=\frac{E_{a}}{R_{3}}$ To find I_{4}, you would use the formula $I_{4}=$ \qquad To find I_{5}, you would use the formula $I_{5}=$ \qquad	Solution to Frame 93 $\begin{aligned} & I_{1}=\frac{E_{a}}{R_{1}}=\frac{100 \mathrm{v}}{50 \Omega}=2 \mathrm{amp} \\ & \mathrm{I}_{2}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}_{2}}=\frac{100 \mathrm{v}}{25 \Omega}=4 \mathrm{amp} \\ & \mathrm{I}_{3}=\frac{\mathrm{E}_{a}}{\mathrm{R}_{3}}=\frac{100 \mathrm{v}}{100 \Omega}=1 \mathrm{amp} \end{aligned}$
FRAME 95 The diagram below shows that I_{t} (total current) flowing into the branches is the (sum/difference) of the current in each branch.	Solution to Frame 94 $\frac{E_{a}}{\mathrm{R}_{4}}$ $\frac{E_{a}}{R_{5}}$

FRAME 96 In the circuit below, I_{t} is \qquad amp.	Solution to Frame 95 sum
FRAME 97 The diagram below shows that I_{t} flowing out of the branches is the (sum/difference) of the current in each branch.	Solution to Frame 96 $2 \mathrm{amp}(0.5+1.5)$
FRAME 98 In the circuit below, I_{t} is the (sum/difference) of I_{1} and I_{2}. Thus $\mathrm{I}_{\mathrm{t}}=$ \qquad .	Solution to Frame 97 sum

FRAME 99	Solution to Frame 98
Fill in the value of I_{t} measured at the two ammeters below:	sum
FRAME 100	$1.5 \mathrm{amp}(1+0.5)$
In a series circuit, current has only one path to follow;	
therefore, it has the same value everywhere in the circuit.	3 amp (1+0.5+1.5)
In a parallel circuit, the current (splits/does not split).	3 amp (1+0.5+1.5)
The current in a parallel circuit (does/does not) have the	
same value everywhere.	Solution to Frame 99
FRAME 101 Congratulations. You have now completed this programmed instruction booklet. It is recommended that you review the lesson material before taking the examination.	splits

End of Lesson 1

